Google Scholar

Research ID




[51] Liu, L., C. Hu, P. Yang, Z. Ju, J. Olesen, J. Tang, 2016. Experimental warming-driven soil drying reduced N2O emissions from fertilized crop rotations of winter wheat-soybean/fallow, 2009-2014, Agriculture, Ecosystems and Environment. In press.


[50] Liu*, Z., H. Hu, H. Yu, X. Yang, H. Yang, C. Ruan, Y. Wang, J. Tang, 2015. Relationship between leaf physiological traits and canopy color indices during the spring leaf-expansion period in an oak forest, Ecosphere, 6(12):259.

[49] Wang, Y., H. Zhang, J. Tang, J. Xu, T. Kou, H. Huang, 2015. Accelerated phosphorus accumulation and acidification of soils under plastic greenhouse condition in four representative organic vegetable cultivation sites, Scientia Horticulturae,195(11):67–73.

[48] Mo, Q., B. Zou, Y. Li, Y. Chen, W. Zhang, R. Mao, J. Wang, X. Lu, X. Li, J. Tang, Z. Li, F. Wang, 2015. Response of plant nutrient stoichiometry to fertilization varies with plant tissues in a tropical forest, Scientific Reports, 5:14605, DOI:10.1038/srep14605.

[47] Gelfand, I., M. Cui, J. Tang, G. P. Robertson, 2015. Short-term drought response of N2O and CO2 emissions from mesic agricultural soils in the US Midwest. Agriculture, Ecosystems, and Environment, 212:127–133.

[46] Chen, C., D. Li, Z. Gao, J. Tang, X. Guo, L. Wang, B. Wan, 2015, Seasonal and interannual variation of carbon exchange over a rice–wheat rotation system on the north China plain, Advances in Atmospheric Sciences, 32:1365-1380.

[45] Chen, Y., E.J. Sayer, Z. Li, Q. Mo, Y. Li, Y. Ding, J. Wang, X. Lu, J. Tang, F. Wang, 2015. Nutrient limitation of woody debris decomposition in a tropical forest: Contrasting effects of N and P addition, Functional Ecology, DOI:10.1111/1365-2435.12471, in press.

[44] Yang*, X., J. Tang, J. Mustard, J.-E. Lee, M. Rossini, J. Joiner, J. W. Munger, A. Kornfeld, A. D. Richardson, 2015. Solar-induced chlorophyll fluorescence correlates with canopy photosynthesis on diurnal and seasonal scales in a temperate deciduous forest. Geophysical Research Letters, 42(8):2977–2987.

[43] Liu, L., C. Hu, P. Yang, Z. Ju, J. Olesen, J. Tang, 2015. Effects of experimental warming and nitrogen addition on soil respiration and CH4 fluxes from crop rotations of winter wheat-soybean/fallow. Agricultural and Forest Meteorology, 207:38-47.

[42] Chen*, X., S. He, Y. Zhang, X. Huang, Y. Huang, D. Chen, X. Huang, J. Tang, 2015. Enhancement of nitrate removal at the sediment–water interface by carbon addition plus vertical mixing, Chemosphere, 136:305-310.

[41] Shibata, H., C. Branquinho, W. H. McDowell, M. J. Mitchell, D. Monteith, J. Tang, L. Arvola, C. Cruz, C. Máguas, D. Cusack, L. Halada, J. Kopacek, S. Sajidu, H. Schubert, N. Tokuchi, J. Záhora. 2015. Consequence of altered nitrogen cycles in the coupled human and ecological system under changing climate: The need for long-term and site-based research, Ambio, 44:178-193.


[40] Wang*, Y., J. Tang, H. Zhang, T. Kou, 2014. Aggregate-associated organic carbon and nitrogen impacted by the long-term combined application of rice straw and pig manure in the red soils in south China. Soil Science, 179:522-528.

[39] Hickman, J. E., C. A. Palm, P. Mutuo, J. M. Melillo, J. Tang, 2014. Nitrous oxide (N2O) emissions in response to increasing fertilizer addition in maize (Zea mays L.) agriculture in western Kenya, Nutrient Cycling in agroecosystems, 100(2):177-187.

[38] Meredith, L. K., R. Commane, A. Dunn, J. W. Munger, J. Tang, S. C. Wofsy, R. G. Prinn, 2014. Ecosystem fluxes of hydrogen: a comparison of flux-gradient methods, Atmospheric Measurement Techniques, 7:2787–2805.

[37] Wang, X., L. Liu, S. Piao, I. Janssens, J. Tang, W. Liu, Y. Chi, J. Wang, S. Xu, 2014. Soil respiration under climate warming: differential response of heterotrophic and autotrophic respiration, Global Change Biology, 20: 3229-3237.

[36] Wang*, Y, J. Tang, H. Zhang, J. Schroder, Y. He, 2014, Phosphorus availability and sorption as affected by long-term fertilization, Agronomy Journal, 106:1583-1592. doi:10.2134/agronj14.0059.

[35] Tang, J., S. Luyssaert, A. D. Richardson, W. Kutsch, I. A. Janssens, 2014. Steeper declines in forest photosynthesis than respiration explain age-driven decreases in forest, Proceedings of the National Academy of Sciences of the USA (PNAS), 111(24): 8856-8860.

[34] Zheng*, H., H. Huang, L. Yao, J. Liu, H. He, J. Tang, 2014, Impacts of rice varieties and management on yield-scaled greenhouse gas emissions from rice fields in China: A meta-analysis, Biogeosciences, 11: 3685–3693.

[33] Yang*, X., J. Tang, J. Mustard, 2014. Beyond leaf color: comparing camera-based phenological metrics with leaf biochemical, biophysical and spectral properties throughout the growing season of a temperate deciduous forest, Journal of Geophysical Research-Biogeosciences, 119: 181–191, doi:10.1002/2013JG002460.


[32] Tang, J. M., and J. W. Tang, 2013. Linking spatial pattern and biophysical parameters of urban vegetation by multitemporal Landsat imagery, IEEE Geoscience and Remote Sensing Letters, 10(5): 1263-1267, doi:10.1109/lgrs.2013.2259795.

[31] Giasson, M.-A.,A. M. Ellison, R. D. Bowden, P. M. Crill, E. A. Davidson, J. E. Drake, S. D. Frey, J. L. Hadley, M. Lavine, J. M. Melillo, J. W. Munger, K. J. Nadelhoffer, E. Nicoll, S. V. Ollinger, K. E. Savage, P. A. Steudler, J. Tang, R. K. Varner, S. C. Wofsy, D. R. Foster, and A. C. Finzi, 2013. Soil respiration in a northeastern US temperate forest: a 22-year synthesis. Ecosphere, 4(11):140.

[30] Hopkins, F., M. A. Gonzalez-Meler, C. E. Flower, D. J. Lynch, C. Czimczik, J. Tang, J.-A. Subke, 2013. Ecosystem-level controls on root-rhizosphere respiration, New Phytologist, 199: 339–351.

[29] Savage K., E. A. Davidson, J. Tang, 2013. Diel patterns of autotrophic and heterotrophic respiration among phenological stages, Global Change Biology, 19: 1151–1159.

[28] Vihervaara P., D. D’Amato, M. Forsius, P. Angelstam, C. Baessler, P. Balvanera, B. Boldgiv, P. Bourgeron, J. Dick, R. Kanka , S. Klotz, M. Maass, V. Melecis, P. Petřík, H. Shibata, J. Tang, J. Thompson, S. Zacharias, 2013. Using long-term ecosystem service and biodiversity data to study the impacts of and adaptation options in response to climate change: insights from the global ILTER sites network, Current Opinion in Environmental Sustainability, 5:53-66.


[27] Yang*, X., J. F. Mustard, J. Tang, H. Xu, 2012. Regional scale phenology modeling based on meteorological records and remote sensing observations, Journal of Geophysical Research-Biogeosciences, 117, G03029, doi:10.1029/2012JG001977.


[26] Liu S., B. Bond-Lamberty, J. A. Hicke, R. Vargas, S. Zhao, J. Chen, S. L. Edburg, J. Liu, A. D. McGuire, J. Xiao, R. Keane, W. Yuan, J. Tang, Y. Luo, C. Potter, and J. Oeding, 2011. Simulating the impacts of disturbances on forest carbon cycling in North America: processes, data, models, and challenges, Journal of Geophysical Research-Biogeosciences, 116, G00K08, doi:10.1029/2010JG001585.

[25] Cao, S., G. Sun, Z. Zhang, L. Chen, Q. Feng, B. Fu, S. McNulty, D. Shankman, J. Tang, Y. Wang, X. Wei, 2011. Greening China naturally, Ambio, 40: 828-831. DOI: 10.1007/s13280-011-0150-8.

[24] Moseman-Valtierra S., R. Gonzalez, K. Kroeger, J. Tang, W. Chao, J. Crusius, J. Bratton, A. Green and J. Shelton, 2011. Short-term nitrogen additions can shift a coastal wetland from a sink to a source of N2O, Atmospheric Environment, 45: 4390-4397.

[23] Zhou*, Y.M., J. Tang, J.M. Melillo, S. Butler, J.E. Mohan, 2011. Root standing crop and chemistry after six years of soil warming in a temperate forest. Tree Physiology, 31: 707-717.

[22] Chen, L., Z. Zhang, Z. Li, J. Tang, P. Caldwell, W. Zhang, 2011. Biophysical control of whole tree transpiration under an urban environment in Northern China, Journal of Hydrology, 402: 388-400.

[21] Melillo J.M., S. Butler, J. Johnson, J. Mohan, P.A. Steudler, H. Lux, E. Burrows, F. Bowles, R. Smith, T. Hill, C. Vario, A.J. Burton, Y. Zhou, J. Tang, 2011. Soil warming, carbon-nitrogen interactions and forest carbon budgets, Proceedings of the National Academy of Sciences of the USA (PNAS), 108: 9508-9512.

Highlighted by “Faculty of 1000 Biology”

[20] Harmon M.E., B. Bond-Lamberty, J. Tang, and R. Vargas, 2011. Heterotrophic respiration in disturbed forests: A review with examples from North America, Journal of Geophysical Research-Biogeosciences 116, G00K04, doi:10.1029/2010JG001495.


[19] Liang N., T. Hirano, Z.-M. Zheng, J. Tang, Y. Fujinuma, 2010. Soil CO2 efflux of a larch forest in northern Japan, Biogeosciences, 7: 3447–3457.

[18] Vargas R., D. Baldocchi, M. Allen, M. Bahn, T. Black, S. Collins, J. Curiel Yuste, T. Hirano, R. Jassal, J. Pumpanen, J. Tang, 2010. Looking deeper into the soil: biophysical controls and seasonal lags of soil CO2 production and efflux, Ecological Applications, 20: 1569-1582.

[17] Bahn M., M. Reichstein, E. A. Davidson, J. Grünzweig, M. Jung, M. S. Carbone, D. Epron, L. Misson, Y. Nouvellon, O. Roupsard, K. Savage, S. E. Trumbore, C. Gimeno, J. Curiel Yuste, J. Tang, R. Vargas, and I. A. Janssens, 2010. Soil respiration at mean annual temperature predicts annual total across vegetation types and biomes, Biogeosciences, 7: 2147–2157, doi:10.5194/bg-7-2147-2010.

[16] Janssens I.A., W. Dieleman, S. Luyssaert, J.-A. Subke, M. Reichstein, R. Ceulemans, P. Ciais, A.J. Dolman, J. Grace, G. Matteucci, D. Papale, S.L. Piao, E.-D. Schulze, J. Tang, B.E. Law, 2010. Reduction of forest soil respiration in response to nitrogen deposition, Nature Geoscience, 3: 315-322.


[15] Tang, J., P.V. Bolstad, J.G. Martin, 2009. Soil carbon fluxes and stocks in a Great Lakes forest chronosequence, Global Change Biology, 15: 145-155.


[14] Tang, J., P.V. Bolstad, A.R. Desai, J.G. Martin, B.D. Cook, K.J. Davis, E.V. Carey, 2008. Ecosystem respiration and its components in an old-growth forest in the Great Lakes region of the United States, Agricultural and Forest Meteorology, 148: 171-185.

[13] Ewers, B.E., D.S. Mackay, J. Tang, P. Bolstad, S. Samanta, 2008.  Intercomparison of sugar maple (Acer sacchrum Marsh.) stand transpiration responses to environmental conditions from the western Great Lakes Region of the United States, Agricultural and Forest Meteorology, 148: 231-246.

[12] Desai, A.R., A.N. Noormets, P.V. Bolstad, J. Chen, B.D. Cook, P.V. Curtis, K.J. Davis, E.S. Euskirchen, C. Gough, J.M. Martin, D.M. Ricciuto, H.P. Schmid, H. Su, J. Tang, C. Vogel, W. Wang, 2008. Influence of vegetation type, stand age and climate on carbon dioxide fluxes across the Upper Midwest, USA: Implications for regional scaling of carbon flux, Agricultural and Forest Meteorology, 148: 288-308.


[11] Luyssaert S., I. Inglima, M. Jung, A.D. Richardson, M. Reichstein, D. Papale, S.L. Piao, E.D. Schulze, L. Wingate, G. Matteucci, L. Aragao, M. Aubinet, C. Beer, C. Bernhofer, K.G. Black, D. Bonal, J.M. Bonnefond, J. Chambers, P. Ciais, B. Cook, K.J. Davis, A.J. Dolman, B. Gielen, M. Goulden, J. Grace, A. Granier, A. Grelle, T. Griffis, T. Grunwald, G. Guidolotti, P.J. Hanson, R. Harding, D.Y. Hollinger, L.R. Hutyra, P. Kolari, B. Kruijt, W. Kutsch, F. Lagergren, T. Laurila, B. E. Law, G. Le Maire, A. Lindroth, D. Loustau, Y. Malhi, J. Mateus, M. Migliavacca, L. Misson, L. Montagnani, J. Moncrieff, E. Moors, J.W. Munger, E. Nikinmaa, S. V. Ollinger, G. Pita, C. Rebmann, O. Roupsard, N. Saigusa, M. J. Sanz, G. Seufert, C. Sierra, M.-L. Smith, J. Tang, R. Valentini, T. Vesala, and I. A. Janssens, 2007. CO2 balance of boreal, temperate, and tropical forests derived from a global database, Global Change Biology, 13: 2509-2537.


[10] Tang, J., P.V. Bolstad, B.E. Ewers, A.R. Desai, K.J. Davis, E.V. Carey, 2006. Sap-flux- upscaled canopy transpiration, stomatal conductance and water use efficiency in an old-growth forest in the Great Lakes region of United States, Journal of Geophysical Research-Biogeosciences, 111, G02009, doi:10.1029/2005JG000083.

[9] Baldocchi, D.D., J. Tang, L. Xu, 2006. How lags, pulses and switches in biophysical regulators affect spatio-temporal variation of soil respiration in an oak-grass savanna, Journal of Geophysical Research – Biogeosciences, 111, G02008, doi:10.1029/2005JG000063.

[8] Misson, L., A. Gershenson, J. Tang, R. Boniello, M. McKay, W. Cheng, A. Goldstein, 2006. Influence of canopy photosynthesis and rain pulses on root dynamics and soil respiration in a young ponderosa pine forest, Tree Physiology, 26: 833-844.


[7] Tang, J., D.D. Baldocchi, L. Xu, 2005. Tree photosynthesis modulates soil respiration on a diurnal time scale, Global Change Biology, 11: 1298-1304.

Highlighted by “Faculty of 1000 Biology” as “New Finding.”

[6] Tang, J., L. Misson, A. Gershenson, W. Cheng, A. Goldstein, 2005. Continuous measurements of soil respiration with and without roots in a ponderosa pine plantation in the Sierra Nevada Mountains, Agricultural and Forest Meteorology, 132: 212-227.

[5] Tang, J., D.D. Baldocchi, 2005. Spatial-temporal variation of soil respiration in an oak-grass savanna ecosystem in California and its partitioning into autotrophic and heterotrophic components, Biogeochemistry, 73: 183-207.

[4] Tang, J., Y. Qi, M. Xu, L. Misson, A. Goldstein, 2005. Forest thinning and soil respiration in a ponderosa pine plantation in the Sierra Nevada, Tree Physiology, 25: 57-66.

[3] Misson, L., J. Tang, M. Xu, M. McKay, A. Goldstein, 2005. Influences of recovery from clear-cut, climate variability, and thinning on the carbon and energy balance of a young ponderosa pine plantation, Agricultural and Forest Meteorology, 130: 207-222.


[2] Xu, L., D.D. Baldocchi, J. Tang, 2004. How soil moisture, rain pulses and growth alter the response of ecosystem respiration to temperature. Global Biogeochemical Cycles,18, GB4002, doi:10.1029/2004GB002281.


[1] Tang, J., D.D. Baldocchi, Y. Qi, L. Xu, 2003. Assessing soil CO2 efflux using continuous measurements of CO2 within the soil profile with small solid-state sensors, Agricultural and Forest Meteorology, 118: 207-220.